H(t)=-16t^2+50t+110

Simple and best practice solution for H(t)=-16t^2+50t+110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+50t+110 equation:



(H)=-16H^2+50H+110
We move all terms to the left:
(H)-(-16H^2+50H+110)=0
We get rid of parentheses
16H^2-50H+H-110=0
We add all the numbers together, and all the variables
16H^2-49H-110=0
a = 16; b = -49; c = -110;
Δ = b2-4ac
Δ = -492-4·16·(-110)
Δ = 9441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9441}=\sqrt{9*1049}=\sqrt{9}*\sqrt{1049}=3\sqrt{1049}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-3\sqrt{1049}}{2*16}=\frac{49-3\sqrt{1049}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+3\sqrt{1049}}{2*16}=\frac{49+3\sqrt{1049}}{32} $

See similar equations:

| x(x+1)+(x+2)=72 | | 80=(240-16t)/(t+3) | | 27/40=3/10x | | 1/9x+5=-5 | | 80=240-16t/t+3 | | -11(19x-3)-12x+1=11(-4x+4)-17x-5 | | 3/10x-3/8=3/10 | | 2(x+40=4x+3-2x+5 | | (n-3)(n+10)=0 | | 3/4(2/5x-1/2)=3/10 | | 2x+10=66+5x | | 3/x+5=4/3x+31/6 | | 2x+2.8=5.4 | | 3x×13=4 | | X-4=6x+31 | | -8.2=1.8-2y | | -13(-20x-14)+5x+7=-7(-x-11)+12x+13 | | -116=6(-3+2)+2m | | 3/5=1/5+3x | | -12n+12(4n-4)=6(1+5) | | 35=9x-28 | | 6x^2+17+10=0 | | -3/4x-8=5/4 | | -2(8/3)=a | | 11(-15x-6)=-12x-19 | | 1/3x+10=13 | | 3x+(4-6x)=18 | | 6x+44=-8(x-2) | | y=14-4(-3) | | 2.3x+4.5x(3)=3792 | | x-0.2x=320 | | y=14-(-3) |

Equations solver categories